Примеры задач, приводящих к необходимости подсчета числа сочетаний
  раздел: Комбинаторные формулы
 
 
Примеры задач, приводящих к необходимости подсчета числа сочетаний:
1) Сколькими способами можно из 15 человек выбрать 6 кандидатов для назначения на работу в одинаковых должностях?
2) Сколькими способами можно из 20 книг отобрать 12 книг?

Выведем формулу для подсчета числа сочетаний. Пусть имеется множество Un и нужно образовать упорядоченное подмножество множества Un, содержащее k элементов (то есть образовать размещение). Делаем это так:
1) выделим какие-либо k элементов из n элементов множества Un Это, согласно сказанному выше, можно сделать Cnk способами;
2) упорядочим выделенные k элементов, что можно сделать Pk=k! способами. Всего можно получить Cnk • Pk вариантов (упорядоченных подмножеств), откуда следует:

Ank = Cnk • Pk,то есть

Примеры задач, приводящих к необходимости подсчета числа сочетаний


Пример: 6 человек из 15 можно выбрать числом способов, равным

Примеры задач, приводящих к необходимости подсчета числа сочетаний


Задачи на подсчет числа подмножеств конечного множества называются комбинаторными. Рассмотрим некоторые комбинаторные задачи.

1.Из семи заводов организация должна выбрать три для размещения трех различных заказов. Сколькими способами можно разместить заказы?
Так как все заводы различны, и из условия ясно, что каждый завод может либо получить один заказ, либо не получить ни одного, здесь нужно считать число размещений

Примеры задач, приводящих к необходимости подсчета числа сочетаний


2.Если из текста задачи 1 убрать условие различия трех заказов, сохранив все остальные условия, получим другую задачу. Теперь способ размещения заказов определяется только выбором тройки заводов, так как все эти заводы получат одинаковые заказы, и число вариантов определяется как число сочетаний.

Примеры задач, приводящих к необходимости подсчета числа сочетаний

 
 
 
 
 
Меню
 
Содержание
Комбинаторные формулы
Определение вероятности
Формула полной вероятности
Асимптотические формулы
Дискретные величины
Закон распределения
Непрерывные величины
Правило 3-х (трех “сигм”)
Коэффициент корреляции
Распределение X2
Математическая статистика
Интервальные оценки
Проверка гипотез
Математическое ожидание

 
Авторизация
 
 
HTML; } $login_panel .= <<
HTML; } else { $login_panel .= <<
Панель управления
HTML; if ($user_group[$member_id['user_group']]['allow_admin']) { $login_panel .= <<
 
Профиль    
Статистика   Добавить новость
Закладки   Непрочитанное
HTML; } else { $login_panel = <<
Панель управления
логин :  
пароль :  
   
   
Регистрация
Напомнить пароль?
HTML; } ?>

 
 
 
 
{sape}  
 
 
   
Лекции по теории вероятности и математической статистике.
Предназначены студентам для ознакомления.
Копирование информации разрешено с указанием ссылки на источник.
teor-ver.ru