На рисунке 1. изображены графики
  раздел: Проверка гипотезы о математическом ожидании
 
 
На рисунке 1. изображены графики
p0(z) и p1(z) – функций плотности распре-
деления случайной величины z при спра-
ведливости гипотез H0 и H1,
соответственно.

На рисунке 1. изображены графики


Если величина На рисунке 1. изображены графики , полученная из
выборочных данных, относительно велика, то и величина z велика, что
является свидетельством в пользу гипотезы H1. Относительно малые
значения На рисунке 1. изображены графики приводят к малым значениям z, что свидетельствует в пользу
гипотезы H0. Отсюда следует, что должна быть выбрана правосторонняя
критическая область. По принятому уровню значимости a (например a =
0,05), используя то, что случайная величина z распределена по
нормальному закону, определим значение Kкр из формулы

На рисунке 1. изображены графики.

 
 
 
 
 
Меню
 
Содержание
Комбинаторные формулы
Определение вероятности
Формула полной вероятности
Асимптотические формулы
Дискретные величины
Закон распределения
Непрерывные величины
Правило 3-х (трех “сигм”)
Коэффициент корреляции
Распределение X2
Математическая статистика
Интервальные оценки
Проверка гипотез
Математическое ожидание

 
Авторизация
 
 
HTML; } $login_panel .= <<
HTML; } else { $login_panel .= <<
Панель управления
HTML; if ($user_group[$member_id['user_group']]['allow_admin']) { $login_panel .= <<
 
Профиль    
Статистика   Добавить новость
Закладки   Непрочитанное
HTML; } else { $login_panel = <<
Панель управления
логин :  
пароль :  
   
   
Регистрация
Напомнить пароль?
HTML; } ?>

 
 
 
 
{sape}  
 
 
   
Лекции по теории вероятности и математической статистике.
Предназначены студентам для ознакомления.
Копирование информации разрешено с указанием ссылки на источник.
teor-ver.ru