Биномиальный закон распределения.
  раздел: Биномиальный закон распределения
 
 
Пусть заданы числа n Биномиальный закон распределения. N и p (0 Биномиальный закон распределения. p Биномиальный закон распределения. 1). Тогда каждому целому числу из
промежутка [0; n] можно поставить в соответствие вероятность, рассчитанную
по формуле Бернулли. Получим закон распределения случайной величины
(назовём её Биномиальный закон распределения.)

Биномиальный закон распределения.


Будем говорить, что случайная величина Биномиальный закон распределения. распределена по закону Бернулли.
Такой случайной величиной является частота появления события А в n
повторных независимых испытаниях, если в каждом испытании событие А
происходит с вероятностью p.
Рассмотрим отдельное i-е испытание. Пространство элементарных
исходов для него имеет вид

Биномиальный закон распределения.


Определим на этом пространстве случайную величину Биномиальный закон распределения.i следующим образом:

Биномиальный закон распределения.


 
 
 
 
 
Меню
 
Содержание
Комбинаторные формулы
Определение вероятности
Формула полной вероятности
Асимптотические формулы
Дискретные величины
Закон распределения
Непрерывные величины
Правило 3-х (трех “сигм”)
Коэффициент корреляции
Распределение X2
Математическая статистика
Интервальные оценки
Проверка гипотез
Математическое ожидание

 
Авторизация
 
 
HTML; } $login_panel .= <<
HTML; } else { $login_panel .= <<
Панель управления
HTML; if ($user_group[$member_id['user_group']]['allow_admin']) { $login_panel .= <<
 
Профиль    
Статистика   Добавить новость
Закладки   Непрочитанное
HTML; } else { $login_panel = <<
Панель управления
логин :  
пароль :  
   
   
Регистрация
Напомнить пароль?
HTML; } ?>

 
 
 
 
{sape}  
 
 
   
Лекции по теории вероятности и математической статистике.
Предназначены студентам для ознакомления.
Копирование информации разрешено с указанием ссылки на источник.
teor-ver.ru